Cable Reeling Drums Spring and motor driven

Modular Spring driven cable reels

CLT MODULAR SYSTEM

The concept of the Cavotec Alfo CLT reels is to provide a modular system that retains all the quality and reliability of a standard spring driven cable reel. To guarantee the above, all assembly will take place at Cavotec Alfo by our specially trained and experienced staff. Only when requested will we ship the separete components of the CLT reels unassembled. In this case the modular design allows for easy storage and thanks to the innovative design of the reels, replacing just one part is extremely easy.

The photographs on right show the different packages that can be ordered from Cavotec Alfo. Please refer to the code-tables on the following pages to ascertain the correct codes for your specific CLT reel.

Application type Cases

Case 1 & 2

Horizontal mobile application

The cable is unreeled on a flat and continuous surface. The cable is unreeled horizontally in either travelling directions.

Case 3 & 4

Horizontal mobile application

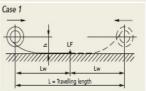
The cable is reeled out on supports (L1 < 1m) or on rollers or rounded smooth supports (L1 = 1 to 3 m, depending on the cable size). The cable is unreeled horizontally in either travelling directions.

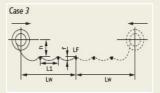
Case 5

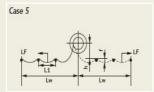
Stationary application

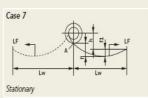
The cable is unreeled horizontally in either travelling directions through support rollers (L1 = 1 to 3 m, depending on the cable size). This type of application is not recommended.

Case 6 & 7

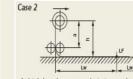

Horizontal mobile application

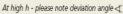

The cable is unreeled horizontally, above the ground and without support, in either travelling directions. The catenerary f1 must be calculated accurately. As a rule the value of fmax is approximately 10% of L.

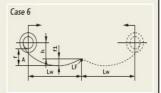

Case 8 & 9

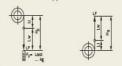

Vertical application

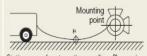
The cable is unreeled vertically downwards (downward inclination). Alternatively the cable is unreeled vertically upwards (upward inclination).






Stationary reel, manually operated




At high h - please note deviation angle ∢

Case 8 - Vertical application – reel on top Case 9 - Vertical application – reel at bottom

Case 11 - Automatic operation

Stationary reel, automatic unreeling. Please give type of ground surface or the surface friction (u).

Explanation of the symbols (case 1 to 7): Lw= maximum reeling cable length [m], (reeling length for reels travelling in both directions = one-half of the total travelling length); h= (installation height) distance between cable deposit plane and drum centre [m]; LF= cable feeding point; f= maximum cable sag [m], in case 6 and 7 related to position A in drawing; f1= maximum cable sag [m], related to cable feeding point LF; L1= roller or support distance [m]

Calculation formula flf1 (m) $\sim \frac{10 \times L^2 \times g}{8 \times F}$

L= support distance [m]; g= cable weight [kg/m]; F= pulling force [Newton]

Explanation of the symbols (case 8 and 9): Lw= maximum reeling cable length [m]; H8/9= maximum cable length hanging down from the drum [m]. The drum is selected according to the total cable weight of the hanging cable. Additional weight (F3) must be considered and added to the cable weight.

Reeling drums Questionaire

Please copy and complete this page and fax or E-Mail

To:		From:	
Quesco cc			
Burt Klopp	er		
Fax 08669	46194		
ask@webn	nail.co.za		
	QUES	TIONNAIRE	
1.	For what type of moving equip	ment is the reel?	
Arc	ough sketch based on the typical	applications shown above is ext	remely valuable.
2.	Reel installation height	h=	m
3.	Travel distance of equipment		m
4.	Cable payout from centre	from o	ne end
5.	What is the max cable length of	on the reel =	m
6.	Type of cable	imaro eograe e	03.23qV
	number of conductors times w		kg/m

volts

times

hours

_m/min

_sec

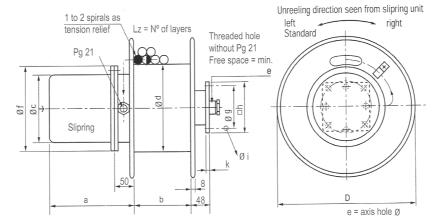
_m/sec

Or Sketch

7. Electrical load ..or amperes at

8. Duty cycle (time on) full load?
9. Number of collector rings required?
10. Type of application? (see above)
11. How many movements per hour?

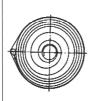
12. Operating hours per day?


14. Acceleration 0 to full in

Other data:

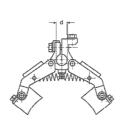
13. Maximum travel/lift speed?

...or acceleration rate


4.1 SPRING DRIVEN CABLE REELS

REEL	DR	RUM DI	М				FLANGE DIM				WEIGHT	
TYPE*	Ød	ØD	b	а	~c	f	е	Øg	Øh	Øi	k	Kg
SCD190	190	360	136	130	140	180	15	100/125	120	4x13/Ø100	11	13.7
										4x11/Ø125	,	
SCD220	220	360	136	130	140	180	15	100/125	120	4x13/Ø100	11	15
			-							4x11/Ø125		
SCD280	280	430	180	150	140/205	180/205	20	100/125	120	4x13/Ø100	12	28
										4x11/Ø125		
SCD400	400	710	280	205		205/360	30	140	160	4xM17	18	72
SCD500	500	800	280	205		205/360	30	140	160	4xM17	18	80

Basic weight (slipring assy 3 + earth) without springs.


Total weight = basic weight plus weight of springs (see below)

Туре	Weight kg	Hub mm	OD mm	Width	Springs	
08	0.550	35	126	18	AA1-A-AA-0000	Spring AA
910	0.550	25	114	18	AA1-A-AB-0000	Spring AB
931	2.200	35	160	25		. 0
951	3.100	35	190	30	AA1-A-BA-0000	Spring BA
991	3.100	35	190	30	AA1-A-BC-0000	Spring BC
952	6.000	45	280	45	AA1-A-DA-0000	Spring DA
972	9.000	45	280	45		
992	7.000	45	315	45	AA1-A-DB-0000	Spring DB
903	6.500	50	400	60	AA1-A-DC-0000	Spring DC
953	12.000	60	400	60	AA1-A-EA-0000	Spring EA
983	9.000	60	315	60	AA 1-A-EA-0000	Spring LA
914	9.000	50	315	60	AA1-A-EB-0000	Spring EB
924	12.000	50	315	60	AA1-A-HA-0000	Spring HA
15	11.000	50	315	60		
925	14.500	50	315	60	AA1-A-SA-0000	Spring SA
965	11.000	65	315	60	AA1-A-TA-0000	Spring TA
975	18.000	65	315	60	AA1-A-UA-0000	Spring UA
985	16.000	85	450	60		
986	25.000	85	450	60	AA1-A-UB-0000	Spring UB

4.1 SPRING DRIVEN CABLE REELS

REEL TYPE	MASS	AMP	SUITAB	LE FOR	SUITABLE FOR		
	kg		HORIZONT	AL CABLE	VERTICAL CABLE		
	_		Ø PAY	/OUT	Ø PAYOUT		
19361420BA-4504	axis hole		12	19	12	12	
	=15mm Ø	25	14	17 21	14	12	
4-SCD190-2-BA-4-25	13.7 kg	max 2.5 mm ²	16.5	12 20			
	_		18	8			
22361420DC-4504	axis hole		16.5 8-10	22 22	12	20 22	
,	=15mm Ø	25	18 10-12	22 22	14	20 13	
4-SCD220-2-DC-4-40	15 kg	max 2.5 mm ²	20 12-14	17 20	20	20 8	
			21.5 14-16	14 17		17	
28431820HA-4704	axis hole		12 8-10	36 24	14	23 22	
	=20mm Ø		14 10-12	38 24	20	23 19	
4-SCD280-2-HA-4-40	32 kg	50	18 12-14	32 26	21	24 18	
. 000200211111110		max 6 mm ²	20 14-16	32 25		25	
			21 16-18	28 25		24	
			25.5 18-20	18		20	
40712820TA-0204	axis hole		12 16-18	60	20	19	
	=30mm Ø		14 18-20	60	21	18	
4-SCD400-2-TA-4-60	72 kg		18 20-22	58	25.5	10	
		50	20 22-24	68 49			
		max 10 mm ²	21 24-26	60 50			
	5		21.5 26-28	35 53			
		1	27.5 28-30	33 50			
40712820TA-0604	72	200	12 22-24	52 49	20	25	
		max 35 mm ²	14 24-26	56 50	21	22	
4-SCD400-2-TA-4-25			18 26-28	52 53	25.5	15	
		1	20 28-30	58 50	30.5	10	

BRUSH ASSEMBLIES

AMPS	DIMEN d(r	ISIONS nm)	PART NUMBER		
	PHASE	EARTH	PHASE	EARTH	
40	10	8	4-BA/40-P	4-BA/40-E	
60	13	12	4-BA/60-P	4-BA/60-E	
150	16	15		4-BA/150-E	
220	17 16		4-BA/220-P	4-BA/220-E	

COLLECTOR RINGS

AMPS	DIMENSIONS d(mm)				PART NUM	BER
	D	d b				
	mm	Ph	E	mm	PHASE	EARTH
40	50	8.5	5.5	10	4-CR/40-P	4-CR/40-E
60	80	11.5	6.5	12	4-CR/60-P	4-CR/60-E
150	130	12.5	8.5	15	4-CR/150-P	4-CR/150-E
220	130	12.5	8.5	20	4-BA/220-P	4-CR/220-E